What's new

Welcome to Offtopix 👋, Visitor

Off Topix is a well-established general discussion forum that originally opened to the public in 2009! We provide a laid-back atmosphere, and our members are down to earth. We have a ton of content, and fresh stuff is constantly being added. We cover all sorts of topics, so there's bound to be something inside to pique your interest. We welcome anyone and everyone to register and become a member of our awesome community.

Join Our Facebook Page Today!

Join the conversation and help spread the word about offtopix on Facebook! Your voice matters—let’s make an impact together!

Join Our X.com Page Today!

Join the conversation and become a champion for Offtopix on X.com! Your voice is powerful, and together, we can create meaningful change!

Join offtopix Discord Server Today!

Join the conversation and become a champion for Offtopix on Discord! Your voice holds incredible power, and together, we can create impactful change!

WUSL: Earth's Deep Mantle Drier Than Previously Thought

Webster

Retired Snark Master
Administrator
Joined
May 11, 2013
Posts
24,890
Reaction score
13,614
Points
2,755
Location
Morganton, N.C.
Website
conversations-ii.freeforums.net
Washington University St. Louis: New model shows Earth’s deep mantle was drier from the start
Earth’s mantle is the thick layer of silicate rock between Earth’s crust and its molten core, making up about 84% of our planet’s volume. The mantle is predominantly solid but, on geologic time scales, it behaves as a viscous fluid — as difficult to stir and mix as a pot of caramel.

But, sticking with candy comparisons, maybe think more about malt balls and not gooey caramels. A new study from Washington University in St. Louis suggests that the deep part of the ancient mantle closest to the Earth’s core started out substantially drier than the part of the mantle closest to the young planet’s surface.

By analyzing noble gas isotope data, Rita Parai, assistant professor of earth and planetary sciences in Arts & Sciences, determined that the ancient plume mantle (the deep part) had a water concentration that was a factor of 4 to 250 times lower when compared with the water concentration of the upper mantle.

The resulting viscosity contrast could have prevented mixing within the mantle, helping to explain certain long-standing mysteries about Earth’s formation and evolution. The research is published July 14 in the Proceedings of the National Academy of Sciences (PNAS). “A primordial viscosity contrast may explain why the giant impacts that triggered whole-mantle magma oceans did not homogenize the growing planet,” said Parai, who is a faculty fellow of the university’s McDonnell Center for the Space Sciences. “It also could explain why the plume mantle has experienced less processing by partial melting over Earth history.”

Parai’s investigation challenges an assumption that was once widely held in her field: that Earth’s mantle was uniform from the start. When the solar system settled into its current layout about 4.5 billion years ago, Earth formed when gravity pulled swirling gas and dust in to become the third planet from the sun. Volatiles like water, carbon, nitrogen and the noble gases were delivered to Earth as it formed, but Parai’s study suggests that the material that accreted earlier was a drier type of rock than what accreted later.

She found that mantle helium, neon and xenon (Xe) isotopes require that the plume mantle had low concentrations of volatiles like Xe and water at the end of that period of accretion, compared with the upper mantle. The upper mantle may have benefited from a larger contribution of mass from volatile-rich materials similar to a class of meteorites called carbonaceous chondrites.

Parai takes a multi-pronged approach to figuring out a planet’s life story. This study in PNAS presents a model that she developed, but Parai also does her own experimental work with rock samples in her high-temperature isotope geochemistry laboratory at Washington University. She studies noble gas isotopes — especially those from Xe — in volcanic rocks to understand the evolution of Earth’s mantle composition and in terrestrial rocks at Earth’s surface to see the evolution of the atmosphere.

“In my lab,” Parai said, “we take natural rock samples — mostly modern volcanic rocks, but also some ancient rocks — and we try to understand different things about Earth history. Specifically, we want to know how Earth got its atmosphere, its oceans and other features related to habitability.”
 
Star Trek Wow GIF
 

Create an account or login to post a reply

You must be a member in order to post a reply

Create an account

Create an account here on Off Topix. It's quick & easy!

Log in

Already have an account? Log in here.

Welcome to Offtopix 👋, Visitor

Off Topix is a well-established general discussion forum that originally opened to the public in 2009! We provide a laid-back atmosphere, and our members are down to earth. We have a ton of content, and fresh stuff is constantly being added. We cover all sorts of topics, so there's bound to be something inside to pique your interest. We welcome anyone and everyone to register and become a member of our awesome community.

Theme customization system

You can customize some areas of the forum theme from this menu.

  • Theme customizations unavailable!

    Theme customization fields are not available to you, please contact the administrator for more information.

  • Choose the color combination that reflects your taste
    Background images
    Color gradient backgrounds
Back